
Styling websites faster
An introduction to Sass

Getting started

Run the following commands in your terminal:

git clone https://github.com/evantarrh/learn-sass.git

cd learn-sass

sudo gem install sass

Getting started

Then, run:

open index.html

There’s already CSS here! So what are we doing here?

THE PROBLEM

CSS: Problems

CSS is outdated and underpowered. It was never
designed to work well with large-scale projects.

CSS: Problems

1. No variables
a. lots of rewriting
b. difficult to change things, e.g. a theme color

CSS: Problems

1. No variables
a. lots of rewriting
b. difficult to change things, e.g. a theme color

2. No way to separate concerns

CSS: Problems

1. No variables
a. lots of rewriting
b. difficult to change things, e.g. a theme color

2. No way to separate concerns
3. Selectors (e.g. section .hero > p > span .code

.css) can get complicated and caterpillar-y

CSS: Problems

1. No variables
a. lots of rewriting
b. difficult to change things, e.g. a theme color

2. No way to separate concerns
3. Selectors (e.g. section .hero > p > span .code

.css) can get complicated and caterpillar-y
4. General lack of features :(

THE SOLUTION

Sass: Magic CSS

1. Variables
2. Separation of concerns
3. Nesting
4. Features

Sass: Magic CSS

1. Variables
2. Separation of concerns
3. Nesting
4. Features
5. Cool factor �

Making Sass work

It’s easy: just start with CSS
Run the following commands in your terminal, from within
the learn-sass directory:

mkdir scss

cp css/index.css scss/index.scss

It’s easy: just start with CSS
Run the following commands in your terminal, from within
the learn-sass directory:

mkdir scss

cp css/index.css scss/index.scss

Now, we have two folders, one of which contains index.css
and the other of which contains index.scss.

Compiling Sass

1. Once you’ve changed something in index.scss,
run this from the learn-sass directory:

 sass scss/index.scss css/index.css

This compiles the SCSS from your scss
directory into css/index.css.

Establish a workflow

It’s annoying to have to run that every time you
want to change something, though! Fortunately,
there exists a perfect solution:

 sass --watch scss:css

Writing Sass

Using variables

Variables should be declared at the top of scss files
like so:

$gray: #ccc;

Variables will always start with a dollar sign.

Using variables
Once you’ve declared the variable, you can use it
throughout all scss files.

$gray: #ccc;

h1 {
color: $gray;

}

Variables: Benefits
1. Easy to change

$gray: #c6c6c6;

2. Semantic
$light-gray: #eee;
$gray: #aaa;
$dark-gray: #444;

Wouldn’t it make sense if you could write
CSS with a similar structure to your HTML?

Nesting

section {
background-color: $gray;

p {
font-size: 18px;

}
}

Create a new file in the scss directory, called
_colors.scss. Inside it, write:

$gray: #b0b;

Imports

Back in index.scss, delete the “$gray: #ccc” line
and replace it with:

@import ‘colors’;

Imports

Here’s what our two .scss files should look like:

Imports

index.scss

@import ‘colors’;

html, body {
font-size: 18px;

}

...

_colors.scss

$gray: #b0b;

Sass is smart, and any import statements will
make it search for a .scss file in the same directory
that begins with an underscore.

So, the code we wrote automatically incorporates
the _colors.scss file into the output. Neat!

Imports

But why stop there? Let’s create a
_typography.scss that will take care of
everything font-related.

Imports

Do you see what’s happening? Our index.scss
file is getting smaller and smaller.

Imports

Let’s take a few minutes and work to make our
index.scss look like this (and nothing else!):

An Exercise

index.scss

@import ‘colors’;
@import ‘typography’;
@import ‘main’;

Reminder—this command will help!
sass --watch scss:css

Order of operations matters. See what happens if
you put @import ‘colors’; at the bottom of
your imports.

Imports: major ɞ

Responsive Sass

One of the best things about separating concerns
is that it makes responsive design much easier to
pull off. Let’s start by creating a new module,
_media_queries.scss.

Media queries

This can be way more detailed for some projects,
but this is all we’ll need right now.

Media Queries

_media_queries.scss

$phone-landscape-max: 640px;
$tablet-landscape-max: 1024px;

_responsive.scss

@media screen and (max-width: $tablet-landscape-max) {
 html, body {
 font-size: 16px;
 }
}

@media screen and (max-width: $phone-landscape-max) {
 html, body {
 font-size: 14px;
 }
}

Media queries in context

Imports
index.scss

@import ‘colors’;
@import ‘typography’;

h1 {
 border-bottom: 1px solid $gray;
 margin-bottom: 1rem;
 margin-top: 5rem;
 padding-bottom: 1rem;
}

h2 {
 padding-bottom: 0.5rem;
 margin-bottom: 2rem;
}
...

_typography.scss

$sans: Roboto Condensed;
$display: Playfair Display;

html, body {
font-size: 18px;

}

h1 {
font-family: $display;
font-size: 4rem;
line-height: 4rem;

}

h2 {
...

Now our index.scss should look like this:

Using media queries for good

index.scss

@import ‘colors’;
@import ‘typography’;
@import ‘main’;
@import ‘media_queries’;
@import ‘responsive’;

Bonus

Mixins

@mixin border-radius($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 -ms-border-radius: $radius;
 border-radius: $radius;
}

.box {
@include border-radius(10px);

}

Functions

a:hover {
color: lighten($link-blue, 20%);

}

h2 > a {
color: saturate($link-blue, 40%);

}

Math

.content {
width: (900 * 1.5) - 100px;
max-width: $landscape-portrait-max - 250px;

}

Thanks!
@evantarrh

