Collaborating with Git

Because coding is better with
friends

ALTERNATIVES

Alternatives

1. Email a.zip of your project to yourself and your
friends every once in a while

2. (Hackathon only) Everyone works on their own
files and then you put everything in the same
folder right before you demo

Is better

What is Git?

Git is version control software.

Version control is a way to keep track of a folder

over time. User-defined savepoints, called
commits, are used to keep track of changes.

What is Git?

e Important to have a workflow, e.g.:
o (dowork)

git add -A
git commit -m “Fixed the button again 1lol”
git push origin master

o (repeat)

e But this workflow must change when you work
with others.

WORK TOGETHER

Working together

collaborate using Git. A lot!

To me, there are three main workflows to be
aware of.

Working together

1. Working on a very small (<4 person)
project where work doesn’t need to be
reviewed

e everyone shares a copy of the centralized repo
and does their work on the master branch
each contributor is responsible for the quality of
their own work

Small projects #1

evantarrh / bruhzzfeed @Unwatch~ 2 #Star 1 YFork 1

<> Code () Issues 0 i1 Pull requests 0 Wiki 4~ Pulse [:Ii Graphs £ Settings
Clarifai API + popular Imgur images + jokes http://bruhhh.co — Edit

D 45 commits ¥ 1 branch © Oreleases % 2 contributors
I

Branch: master v [AR TG New file Upload files Find file HTTPS v https://github.com/evan E& [H Download ZIP

. evantarrh adding google analytics Latest commit 46fe@dd on Oct 18, 2015

[backend general cleanup, refactoring db to work with heroku 7 months ago
| static big refactor of app.py 6 months ago
m templates adding google analytics 6 months ago
B .gitignore adding google analytics 6 months ago
B Procfile Update Procfile 7 months ago

E README.md Update README.md 7 months ago

Working together

2. Working on a small or private project
where work needs to be reviewed

everyone shares a copy of the centralized repo

each contributor has multiple branches on their
local machine, keeping track of both the master

branch and their own branches at the same time
if a contributor wants to incorporate a change,

they open a pull request from one of their
branches to the master branch

2. Working on a small or private project
where work needs to be reviewed

® everyone shares a copy of the centralized repo
e each contributor has multiple branches on their
local machine, keeping track of both the master

branch and their own branches at the same time
if a contributor wants to incorporate a change,
they open a pull request from one of their
branches to the master branch

other contributors then review the pull request
before merging the work into the master branch

Small projects #2

mayankmahajan24 / QL @Unwatch~ 5 JrUnstar 4 YFork 1

<> Code (1) Issues 3) Pull requests 0 Wiki 4~ Pulse lili Graphs
QL Language and Compiler, for Programming Langauges and Translators Course Fall 2015

{p) 378 commits P 1 branch © 0 releases &% 5 contributors

Branch: master v | [WICUR TN ELTTEE New file Upload files Findfile = HTTPS~ https://github.com/maya E& [= Download ZIP

. evantarrh Merge pull request #54 from mayankmahajan24/anshul-lastminute - Latest commit c96ad1f on Dec 26, 2015

| build where in progress 4 months ago

B compiler last minute 4 months ago

| docs last minute 4 months ago

il tests formatting and compressing integration tests 4 months ago
.gitignore adding fitbit integration test. remarkable 4 months ago
gitig

B Makefile More headers 4 months ago

Working together

3. Working on a large open-source project

one centralized repo

each contributor has their own copy of the repo,
called a fork

if a contributor wants to publish a change, they
open a pull request from their fork

the owner(s) then reviews the pull request before
merging the work into the central repo

Open source projects

¥ evantarrh / rails @ Unwatch~v 1 sStar 0 YFork 12424

forked from rails/rails

<> Code 1] Pull requests 0 4~ Pulse [ili Graphs 1 Settings
Ruby on Rails http://rubyonrails.org — Edit

{p 57,490 commits {5 48 branches © 290 releases i 3,044 contributors

Branch: master v [\ VAT [N TGS New file Upload files =~ Find file ~ HTTPS ~ https://github.com/evan. B2 [Download ZIP

This branch is even with rails:master. i Pull request Compare
37 jeremy Merge pull request #24511 from lihanli/activemodel-dirty-attribute-ch... ... Latest commit 20f fb63 30 minutes ago
i} .github fix typo in pull_request_template [ci skip] 2 months ago
| actioncable Cable typo: isSupportedProtocol -> isProtocolSupported 6 days ago
B actionmailer Merge pull request #24497 from vipulnsward/am-changelog-pass 8 hours ago
| actionpack Merge pull request #24504 from nickmalcolm/master an hour ago
8 actionview Improved ActionView flows.rb documention [ci skip] 3 hours ago
| activejob Merge pull request #24165 from y-yagi/generate_application_job_when_n... 2 days ago

| activemodel Merge pull request #24511 from lihanli/activemodel-dirty-attribute-ch... 30 minutes ago

Working together

For this workshop, we'll be focusing on the first two
scenarios. These workflows are more relevant to
both classwork and industry work.

If you have any questions about open source
development and working with forks, I’'m happy to
chat more afterwards!

GETTINGSTARTED

Getting started

For either workflow, getting started will be pretty
much the same process. Whoever wants to own the
repository will create one using GitHub:

Your repositories (| -+ New repository

Find a repository...

All Public Private Sources Forks

This can be done from the command line as well, but
let’s stick with GitHub for now.

Getting started

When you create the repo, check the box that says
“Initialize this repository with a README".

(. Public

Anyone can see this repository. You choose who can commit.

™

Private
You choose who can see and commit to this repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip th

Add .gitignore: None v | Add a license: None v | (3)

Create repository

Getting started

Once the repository has been created, everyone
(including the owner) should clone the repo onto their
own machine with the following command:

git clone https://github.com/evantarrh/cool-repo-name.git

(the URL can be copied and pasted from this box on
GitHub)

Findfile = HTTPS~ https://github.com/evan [E2 4]

Latest commit a¥$

WORKFLOW #1

Workflow #1

Good for:

Hackathons

Small/quick projects
Projects where you know your teammates really

Wl

Workflow #1

e Not too different from working on your own.
The core workflow is the same: after doing work,

O git add -A
O git commit -m “Fixed the button again 1lol”
O git push origin master

e Butwhat happens when you and your teammates
are making changes at the same time?

Local Repository

Diverged from
central repository

Image: https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow A > |

Workflow #1

If you try to push conflicting work to GitHub, it will
give you an error.

If that happens, you’'ll need to run the following

command:
O git pull --rebase origin master

This attempts to integrate the new commits from
GitHub with the new commits on your computer.

Workflow #1

If you're working on similar features, you may

experience a merge conflict. Git will tell you what
files are affected, and you'll be able to see something

strange like this:

<div class="content landing">
<div class="hero-wrapper">

HEAD

<div class="hero-text">Turn your audience into a task force.</div>
+=mmm———
- <div class="hero-text">Transform your network into a task-force

designed to solve local public issues.</div>
+>>>>>>> 45dd2b10f80ee31b308524d85c@b38351fc17ddc

<% if luser_signed_in? %>
<%= link_to "Get Started", new_user_registration_path, class: "hero-

Workflow #1

«“

The area between “<<<<HEAD” and “====" wiill

always be your work. Between the “====" and some
commit hash (“45dd2b01f...”) is the work someone
else has done.

<div class="content landing">
<div class="hero-wrapper">

HEAD

<div class="hero-text">Turn your audience into a task force.</div>
+=mmm———
- <div class="hero-text">Transform your network into a task-force
designed to solve local public issues.</div>
+>>>>>>> 45dd2b10f80ee31b308524d85c@b38351fc17ddc

<% if luser_signed_in? %>
<%= link_to "Get Started", new_user_registration_path, class: "hero-

Workflow #1

It’s your job to patch things up and decide which
change should stay—ideally, you’ll communicate with
whoever made the conflicting change and make sure

you're on the same page!

Once you've resolved the conflict, you must git add
the files you've updated, and then run the following

command:

git rebase --continue

Workflow #1

Whether or not you have to deal with a merge
conflict after running

git pull --rebase origin master,

you'll still need to run
git push origin master
afterwards to publish your changes.

Workflow #1: a summary

(do work)

O

git add -A

git commit -m “Changed something lol icr”
git push origin master

m if necessary:

® git pull --rebase origin master
resolve any merge conflicts & run:

git rebase --continue
git push origin master

WORKFLOW #2

Workflow #2

Good for:
e Class projects
e Real work

e Projects where your team is distributed

Workflow #2

e Alittle more complicated.

e Requires familiarity with Git branches.

Workflow #2

Before doing any work, you should identify what task
you're actually trying to accomplish, and create a new
branch specifically for the task. For example,

git checkout -b fix-mobile-nav

will create a new branch called “fix-mobile-nav”.

e Any work you commit will be added to the fix-
mobile-nav branch, but not to master.

e You can switch between branches with git checkout.
To switch to master, run git checkout master.

N>l

Workflow #2

While on your own branch, you commit work as normal.
Once you think your work is ready to be merged into
master, you’'ll do 2 things:

1. Pushyour branch to GitHub so that your teammates

can see the work you’ve done: git push origin fix-
mobile-nav

. Open a pull request on GitHub. Your teammates will
review your work, and you'll merge the pull request
when at least one of them have given it a thumbs-up.

N>l

Workflow #2: Pull requests

Your recently pushed branches:

¥ add-computer-to-readme (less than a minute ago) i) Compare & pull request

e Push dat green button

e Engagein ahealthy comment dialogue with your
teammates about your pull request

e Once they sign off on it, push dat other green button

< ° This branch has no conflicts with the base branch
Merging can be performed automatically.

ol ECERTINELTES @ You can also open this in GitHub Deskto

Workflow #2: a summary

git checkout master

git pull --rebase origin master
git checkout -b name-of-feature
Until your feature is done:

m (dowork)

B git add -A

B git commit -m “Very good programming”
git push origin name-of-feature

Make a pull request & merge when ready

