
Collaborating with Git
Because coding is better with

friends

ALTERNATIVES

Alternatives
1. Email a .zip of your project to yourself and your

friends every once in a while

2. (Hackathon only) Everyone works on their own
files and then you put everything in the same
folder right before you demo

3. Dropbox? I guess??????

GIT
is better

What is Git?

● Git is version control software.

● Version control is a way to keep track of a folder
over time. User-defined savepoints, called
commits, are used to keep track of changes.

What is Git?
● Important to have a workflow, e.g.:

○ (do work)

○ git add -A
○ git commit -m “Fixed the button again lol”
○ git push origin master
○ (repeat)

● But this workflow must change when you work
with others.

WORK TOGETHER

Working together

● First of all, there are a lot of different ways to
collaborate using Git. A lot!

● To me, there are three main workflows to be
aware of.

Working together
1. Working on a very small (<4 person)
project where work doesn’t need to be
reviewed
● everyone shares a copy of the centralized repo

and does their work on the master branch
● each contributor is responsible for the quality of

their own work

Small projects #1

Working together
2. Working on a small or private project
where work needs to be reviewed
● everyone shares a copy of the centralized repo
● each contributor has multiple branches on their

local machine, keeping track of both the master
branch and their own branches at the same time

● if a contributor wants to incorporate a change,
they open a pull request from one of their
branches to the master branch

2. Working on a small or private project
where work needs to be reviewed
● everyone shares a copy of the centralized repo
● each contributor has multiple branches on their

local machine, keeping track of both the master
branch and their own branches at the same time

● if a contributor wants to incorporate a change,
they open a pull request from one of their
branches to the master branch

● other contributors then review the pull request
before merging the work into the master branch

Small projects #2

Working together

3. Working on a large open-source project
● one centralized repo
● each contributor has their own copy of the repo,

called a fork
● if a contributor wants to publish a change, they

open a pull request from their fork
● the owner(s) then reviews the pull request before

merging the work into the central repo

Open source projects

Working together

For this workshop, we’ll be focusing on the first two
scenarios. These workflows are more relevant to
both classwork and industry work.

If you have any questions about open source
development and working with forks, I’m happy to
chat more afterwards!

GETTING STARTED

Getting started
For either workflow, getting started will be pretty
much the same process. Whoever wants to own the
repository will create one using GitHub:

This can be done from the command line as well, but
let’s stick with GitHub for now.

Getting started
When you create the repo, check the box that says
“Initialize this repository with a README”.

Getting started
Once the repository has been created, everyone
(including the owner) should clone the repo onto their
own machine with the following command:

(the URL can be copied and pasted from this box on
GitHub)

git clone https://github.com/evantarrh/cool-repo-name.git

WORKFLOW #1

Workflow #1
Good for:

● Hackathons
● Small/quick projects
● Projects where you know your teammates really

well

Workflow #1
● Not too different from working on your own.

The core workflow is the same: after doing work,

○ git add -A
○ git commit -m “Fixed the button again lol”
○ git push origin master

● But what happens when you and your teammates
are making changes at the same time?

Image: https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow

Workflow #1
If you try to push conflicting work to GitHub, it will
give you an error.

If that happens, you’ll need to run the following
command:

○ git pull --rebase origin master

This attempts to integrate the new commits from
GitHub with the new commits on your computer.

Workflow #1
If you’re working on similar features, you may
experience a merge conflict. Git will tell you what
files are affected, and you’ll be able to see something
strange like this:

Workflow #1
The area between “<<<<HEAD” and “====” will
always be your work. Between the “====” and some
commit hash (“45dd2b01f…”) is the work someone
else has done.

Workflow #1
It’s your job to patch things up and decide which
change should stay—ideally, you’ll communicate with
whoever made the conflicting change and make sure
you’re on the same page!

Once you’ve resolved the conflict, you must git add
the files you’ve updated, and then run the following
command:

git rebase --continue

Workflow #1
Whether or not you have to deal with a merge
conflict after running

git pull --rebase origin master,
you’ll still need to run

git push origin master
afterwards to publish your changes.

Workflow #1: a summary
○ (do work)

○ git add -A
○ git commit -m “Changed something lol icr”
○ git push origin master

■ if necessary:

● git pull --rebase origin master
● resolve any merge conflicts & run:

● git rebase --continue
● git push origin master

WORKFLOW #2

Workflow #2

Good for:

● Class projects

● Real work

● Projects where your team is distributed

Workflow #2

● A little more complicated.

● Requires familiarity with Git branches.

Workflow #2
Before doing any work, you should identify what task
you’re actually trying to accomplish, and create a new
branch specifically for the task. For example,

git checkout -b fix-mobile-nav

will create a new branch called “fix-mobile-nav”.

● Any work you commit will be added to the fix-
mobile-nav branch, but not to master.

● You can switch between branches with git checkout.
To switch to master, run git checkout master.

Workflow #2
While on your own branch, you commit work as normal.
Once you think your work is ready to be merged into
master, you’ll do 2 things:

1. Push your branch to GitHub so that your teammates
can see the work you’ve done: git push origin fix-
mobile-nav

2. Open a pull request on GitHub. Your teammates will
review your work, and you’ll merge the pull request
when at least one of them have given it a thumbs-up.

Workflow #2: Pull requests

● Push dat green button

● Engage in a healthy comment dialogue with your
teammates about your pull request

● Once they sign off on it, push dat other green button

Workflow #2: a summary
○ git checkout master
○ git pull --rebase origin master
○ git checkout -b name-of-feature
○ Until your feature is done:

■ (do work)

■ git add -A
■ git commit -m “Very good programming”

○ git push origin name-of-feature
○ Make a pull request & merge when ready

